

On Interval Valued Intuitionistic (S, T)-fuzzyH_v-ideals

Arvind Kumar Sinha¹, Manoj Kumar Dewangan²

Department of Mathematics, NIT Raipur, Chhattisgarh, India

ABSTRACT

At an assov introduced the concept of the interval valued intuitionistic fuzzy sets. By using this we introduce the notion of interval valued intuitionistic $-\mathbf{H}_{v}$ fuzzy -ideals of an \mathbf{H}_{v} -ring with respect to a *t*-norm *T* and an *s*-norm *S*. Also some of their characteristic properties are described. The homomorphic image and the inverse image are investigated.

Keywords: $\mathbf{H}_{\mathbf{v}}$ -ideal, interval valued intuitionistic (*S*, *T*)-fuzzy $\mathbf{H}_{\mathbf{v}}$ -ideal, interval valued intuitionistic (*S*, *T*)-fuzzy ideal

I. INTRODUCTION

The concept of hyperstructure was introduced in 1934 by Marty [1]. Hyperstructures have many applications to several branches of pure and applied sciences. Vougiouklis [2] introduced the notion of H_v -structures, and Davvaz [3] surveyed the theory of H_v -structures. After the introduction of fuzzy sets by Zadeh [4], there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [5] is one among them. For more details on intuitionistic fuzzy sets, we refer the reader to [6, 7].

In [8] Biswas applied the concept of intuitoinistic fuzzy sets to the theory of groups and studied intuitionistic fuzzy subgroups of a group. In [9] Kim et al. introduced the notion of fuzzy subquasigroups of a quasigroup. In [10] Kim and Jun introduced the concept of fuzzy ideals of a semigroup. Zhan et al. [11] introduced the notion of an interval valued intuitionistic (S, T) -fuzzy H_v submodule of an H_v -module. This paper continues this line of research for fuzzy H_v -ideal of H_v -ring. In this paper, we introduce the notion of interval valued intuitionistic (S, T) -fuzzy H_v -ideals of an H_v -ring and describe the characteristic properties. We give the homomorphic image and the inverse image. The paper is organized as follows: in section 2 some fundamental definitions on H_{ν} -structures and fuzzy sets are explored, in section 3 we define interval valued intuitionistic (S, T)-fuzzy H_{ν} -ideals and establish some useful properties.

II. METHODS AND MATERIAL

1. Basic Definitions

We first give some basic definitions for proving the further results.

Definition 1.1 [12] Let X be a non-empty set. A mapping $\mu: X \to [0, 1]$ is called a fuzzy set in X. The complement of μ , denoted by μ^c , is the fuzzy set in X given by

$$\mu^{c}(x)=1-\mu(x) \quad \forall x\in X.$$

Definition 1.2 [12] Let f be a mapping from a set X to a set Y. Let μ be a fuzzy set in X and λ be a fuzzy set in Y. Then the inverse image $f^{-1}(\lambda)$ of λ is a fuzzy set in X defined by

$$f^{-1}(\lambda)(x) = \lambda(f(x)) \quad \forall x \in X.$$

The image $f(\mu)$ of μ is the fuzzy set in Y defined by

$$f(\mu)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu(x), & f^{-1}(y) \neq \phi \\ 0, & \text{otherwise} \end{cases}$$

For all $y \in Y$.

Definition 1.3 [12] An intuitionistic fuzzy set A in a non-empty set X is an object having the form $A = \{(x, \mu_A(x), \lambda_A(x)) : x \in X\}$, where the functions $\mu_A : X \to [0, 1]$ and $\lambda_A : X \to [0, 1]$ denote the degree of membership and degree of non membership of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \lambda_A(x) \le 1$ for all $x \in X$. We shall use the symbol $A = \{\mu_A, \lambda_A\}$ for the intuitionistic fuzzy set $A = \{(x, \mu_A(x), \lambda_A(x)) : x \in X\}.$

Definition 1.4 [12] Let $A = \{\mu_A, \lambda_A\}$ and $B = \{\mu_B, \lambda_B\}$ be intuitionistic fuzzy sets in X. Then (1) $A \subseteq B \Leftrightarrow \mu_A(x) \leq \mu_B(x)$ and $\lambda_A(x) \leq \lambda_B(x)$, (2) $A^c = \{(x, \lambda_A(x), \mu_A(x)) : x \in X\},$ (3) $A \cap B = \begin{cases} (x, \min\{\mu_A(x), \mu_B(x)\}, \\ \max\{\lambda_A(x), \lambda_B(x)\}) : x \in X \end{cases}$, (4) $A \cup B = \begin{cases} (x, \max\{\mu_A(x), \mu_B(x)\}, \\ \min\{\lambda_A(x), \lambda_B(x)\}) : x \in X \end{cases}$, (5) $\Box A = \{(x, \mu_A(x), \mu_A^c(x)) : x \in X\}, \end{cases}$, (6) $\Diamond A = \{(x, \lambda_A^c(x), \lambda_A(x)) : x \in X\}.$

Definition 1.5 [13]Let *G* be a non-empty set and $*: G \times G \to \wp^*(G)$ be a hyperoperation, where $\wp^*(G)$ is the set of all the non-empty subsets of *G*. Where $A * B = \bigcup_{a \in A, b \in B} a * b, \forall A, B \subseteq G$. The * is called weak commutative if $x * y \cap y * x \neq \phi, \quad \forall x, y \in G$. The * is called weak associative if $(x * y) * z \cap x * (y * z) \neq \phi, \quad \forall x, y, z \in G$.

A hyperstructure (G, *) is called an H_v-group if

(i) * is weak associative.

(ii) a * G = G * a = G, $\forall a \in G$ (Reproduction axiom).

Definition 1.6 [14] Let G be a hypergroup (or H_{ν} -group) and let μ be a fuzzy subset of G. Then μ is said to be

a fuzzy subhypergroup (or fuzzy H_{ν} -subgroup) of *G* if the following axioms hold:

$$(i)\min\{\mu(x),\,\mu(y)\} \le \inf_{\alpha \in x^* y}\{\mu(\alpha)\}, \quad \forall x,\, y \in G \quad (ii)$$

For all $x, a \in G$ there exists $y \in G$ such that $x \in a * y$ and $\min{\{\mu(a), \mu(x)\} \leq \{\mu(y)\}}$.

Definition 1.7 [15] Let *G* be a hypergroup (or H_{ν} group). An intuitionistic fuzzy set $A = \{\mu_A, \lambda_A\}$ of *G* is called intuitionistic fuzzy subhypergroup (or intuitionistic fuzzy H_{ν} -subgroup) of *G* if the following axioms hold:

(*i*) min{
$$\mu_A(x), \mu_A(y)$$
} $\leq \inf_{\alpha \in x^* y} \{\mu_A(\alpha)\}, \quad \forall x, y \in G.$

(*ii*) For all $x, a \in G$ there exists $y \in G$ such that $x \in a * y$ and $\min\{\mu_A(a), \mu_A(x)\} \le \{\mu_A(y)\}.$ (*iii*) $\sup_{\alpha \in x^* y} \{\lambda_A(\alpha)\} \le \max\{\lambda_A(x), \lambda_A(y)\}, \quad \forall x, y \in G.$

(*iv*) For all $x, a \in G$ there exists $y \in G$ such that $x \in a * y$ and $\{\lambda_A(y)\} \le \max\{\lambda_A(a), \lambda_A(x)\}.$

Definition 1.8 [13] An H_{ν} -ring is a system $(R, +, \cdot)$ with two hyperoperations satisfying the ring-like axioms: (i) (R, +) is an H_{ν} -group, that is,

 $((x+y)+z) \cap (x+(y+z)) \neq \phi \quad \forall x, y \in R,$ $a+R=R+a=R \quad \forall a \in R;$ (ii) (R,·) is an H_v-semigroup; (iii) (·) is weak distributive with respect to (+), that is, for all x, y, z \in R, (x · (y+z)) \cap (x · y + x · z) \neq \phi, ((x+y) · z) \cap (x · z + y · z) \neq \phi.

Definition 1.9 [16] Let *R* be an H_{ν} -ring. A nonempty subset *I* of *R* is called a left (resp., right) H_{ν} -ideal if the following axioms hold:

(i) (*I*, +) is an H_ν-subgroup of (*R*, +),
(ii) *R* · *I* ⊆ *I* (resp., *I* · *R* ⊆ *I*).

Definition 1.10 [16] Let $(R, +, \cdot)$ be an H_{ν} -ring and μ a fuzzy subset of R. Then μ is said to be a left (resp., right) fuzzy H_{ν} -ideal of R if the following axioms hold:

(1) min{ $\mu(x), \mu(y)$ } \leq inf{ $\mu(z) : z \in x + y$ } $\forall x, y \in R$, (2) For all $x, a \in R$ there exists $y \in R$ such that $x \in a + y$ and $\min\{\mu(a), \mu(x)\} \le \mu(y)$, (3) For all $x, a \in R$ there exists $z \in R$ such that $x \in z + a$ and $\min\{\mu(a), \mu(x)\} \le \mu(z)$, (4) $\mu(y) \le \inf\{\mu(z) : z \in x \cdot y\}$ [respectively $\mu(x) \le \inf\{\mu(z) : z \in x \cdot y\}$ $\forall x, y \in R$].

Definition 1.11 [16] An intuitionistic fuzzy set $A = \{\mu_A, \lambda_A\}$ in R is called a left (resp., right) intuitionistic fuzzy H_{v} -ideal of R if $(1)\min\{\mu_A(x),\mu_A(y)\} \le \inf\{\mu_A(z): z \in x+y\}$ $\max\{\lambda_A(x), \mu_A(y)\} \ge \sup\{\lambda_A(z) : z \in x + y\}$ $\forall x, y \in R;$ (2) For all $x, a \in R$ there exists $y \in R$ such that $x \in a + y$ and min $\{\mu_A(a), \mu_A(x)\} \le \mu_A(y)$ and $\max\{\lambda_A(a),\lambda_A(x)\} \ge \lambda_A(y);$ (3) For all $x, a \in R$ there exists $z \in R$ such that $x \in z + a$ and $\min\{\mu_A(a), \mu_A(x)\} \le \mu_A(z)$ and $\max\{\lambda_A(a),\lambda_A(x)\} \geq \lambda_A(z);$ $(4)\mu_{A}(y) \leq \inf\{\mu_{A}(z) : z \in x \cdot y\} \text{ [respectively]}$ $\mu_A(x) \le \inf\{\mu_A(z) : z \in x \cdot y\} \quad \forall x, y \in R \] \text{ and}$ $\lambda_A(y) \ge \sup \{\lambda_A(z) : z \in x \cdot y\}$ [respectively $\lambda_{A}(x) \ge \sup\{\lambda_{A}(z) : z \in x \cdot y\} \quad \forall x, y \in R].$

Definition 1.12 [17] By a *t*-norm *T*, we mean a function $T:[0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions:

(i)T(x,1) = x, $(ii)T(x,y) \le T(x,z) \quad if \ y \le z,$ (iii)T(x,y) = T(y,x), (iv)T(x,T(y,z)) = T(T(x,y),z)For all $x, y, z \in [0,1].$

Definition 1.13 [17] By a *s* -norm *S*, we mean a function $S:[0,1]\times[0,1]\rightarrow[0,1]$ satisfying the following conditions:

(i) S(x,0) = x, $(ii) S(x,y) \le S(x,z) \quad if \ y \le z,$ (iii) S(x,y) = S(y,x),

(iv)S(x,S(y,z)) = S(S(x,y),z)For all $x, y, z \in [0,1]$. It is clear that $T(\alpha, \beta) \le \min{\{\alpha, \beta\}} \le \max{\{\alpha, \beta\}} \le S(\alpha, \beta)$ For all $\alpha, \beta \in [0,1].$ By an interval number \tilde{a} we mean an interval $\left| a^{-}, a^{+} \right|$ where $0 \le a^{-} \le a^{+} \le 1$. The set of all interval numbers is denoted by D[0,1]. We also identify the interval [a,a] by the number $a \in [0,1]$. For the interval numbers $\tilde{a}_i = [a_i^-, a_i^+] \in D[0,1], i \in I$, we define $\max\left\{\tilde{a}_{i},\tilde{b}_{i}\right\} = \left[\max\left(a_{i}^{-},b_{i}^{-}\right),\max\left(a_{i}^{+},b_{i}^{+}\right)\right],$ $\min\left\{\tilde{a}_{i},\tilde{b}_{i}\right\} = \left[\min\left(a_{i}^{-},b_{i}^{-}\right),\min\left(a_{i}^{+},b_{i}^{+}\right)\right],$ $\inf \tilde{a}_i = \left[\bigwedge_{i \in I} a_i^-, \bigwedge_{i \in I} a_i^+\right], \sup \tilde{a}_i = \left[\bigvee_{i \in I} a_i^-, \bigvee_{i \in I} a_i^+\right]$ and put $(1)\tilde{a}_1 \leq \tilde{a}_2 \Leftrightarrow a_1^- \leq a_2^- \text{ and } a_1^+ \leq a_2^+,$ $(2)\tilde{a}_1 = \tilde{a}_2 \Leftrightarrow a_1^- = a_2^- \text{ and } a_1^+ = a_2^+,$ (3) $\tilde{a}_1 < \tilde{a}_2 \Leftrightarrow \tilde{a}_1 \le \tilde{a}_2$ and $\tilde{a}_1 \ne \tilde{a}_2$, (4) $k\tilde{a} = \lceil ka^-, ka^+ \rceil$, whenever $0 \le k \le 1$. It is clear that $(D[0,1],\leq,\vee,\wedge)$ is a complete lattice with 0 = [0,0] as least element and 1 = [1,1] as greatest element. By an interval valued fuzzy set F on X we mean the set $F = \left\{ \left(x, \left\lceil \mu_F^-(x), \mu_F^+(x) \right\rceil \right) : x \in X \right\}.$ Where μ_F^- and μ_F^+ are fuzzy subsets of X such that $\mu_F^-(x) \le \mu_F^+(x)$ for all $x \in X$. Put $\tilde{\mu}_F(x) = \left\lceil \mu_F^-(x), \mu_F^+(x) \right\rceil$. Then $F = \{ (x, \tilde{\mu}_F(x)) : x \in X \}, \text{ where } \tilde{\mu}_F : X \to D[0,1].$

If A, B are two interval valued fuzzy subsets of X, then we define

 $A \subseteq B$ if and only if for all $x \in X$, $\mu_A^-(x) \le \mu_B^-(x)$ and $\mu_A^+(x) \le \mu_B^+(x)$, A = B if and only if for all $x \in X$, $\mu_A^-(x) = \mu_B^-(x)$ and $\mu_A^+(x) = \mu_B^+(x)$. Also, the union, intersection and complement are defined as follows: let A; B be two interval valued fuzzy subsets of X, then

$$A \cup B = \left\{ \left(x, \left[\max \left\{ \mu_{A}^{-}(x), \mu_{B}^{-}(x) \right\}, \max \left\{ \mu_{A}^{+}(x), \mu_{B}^{+}(x) \right\} \right] \right) : x \in X \right\},\$$

$$A \cap B = \left\{ \left(x, \left[\min \left\{ \mu_{A}^{-}(x), \mu_{B}^{-}(x) \right\}, \min \left\{ \mu_{A}^{+}(x), \mu_{B}^{+}(x) \right\} \right] \right\} : x \in X \right\},\$$

$$A^{c} = \left\{ \left(x, \left[\left\{ 1 - \mu_{A}^{-}(x), 1 - \mu_{A}^{+}(x) \right\} \right] \right\} : x \in X \right\}.$$

According to Atanassov an interval valued intuitionistic fuzzy set on X is defined as an object of the form $A = \{(x, \tilde{\mu}_A(x), \tilde{\lambda}_A(x)) : x \in X\}$, where $\tilde{\mu}_A(x)$ and $\tilde{\lambda}_A(x)$ are interval valued fuzzy sets on X such that $0 \le \sup \tilde{\mu}_A(x) + \sup \tilde{\lambda}_A(x) \le 1$ for all $x \in X$.

For the sake of simplicity, in the following such interval valued intuitionistic fuzzy sets will be

denoted by $A = (\tilde{\mu}_A, \tilde{\lambda}_A).$

2.Interval Valued Intuitionistic (S,T)-Fuzzy H_{v} -Ideals

In what follows, let R denote an H_v -ring unless otherwise specified.

Definition 2.1 An interval valued intuitionistic fuzzy set $A = (\tilde{\mu}_A, \tilde{\lambda}_A)$ of R is called an interval valued intuitionistic (S,T) -fuzzy H_v -ideal of Rif the following conditions hold:

$$(1)T\left(\tilde{\mu}_{A}(x),\tilde{\mu}_{A}(y)\right) \leq \inf_{\alpha \in x+y} \tilde{\mu}_{A}(\alpha) \text{ and}$$

$$S\left(\tilde{\lambda}_{A}(x),\tilde{\lambda}_{A}(y)\right) \geq \sup_{\alpha \in x+y} \tilde{\lambda}_{A}(\alpha), \forall x, y \in R, \{2\}, \forall x, a \in R \text{ there exists } y \in R \text{ such that}$$

$$(2)\forall x, a \in R \text{ there exists } y \in R \text{ such that}$$

$$x \in a+y, T\left(\tilde{\mu}_{A}(x),\tilde{\mu}_{A}(a)\right) \leq \tilde{\mu}_{A}(y) \text{ and}$$

$$S\left(\tilde{\lambda}_{A}(x),\tilde{\lambda}_{A}(a)\right) \geq \tilde{\lambda}_{A}(y), \quad (3)\forall x, a \in R \text{ there exists } z \in R \text{ such that}$$

$$x \in z+a, T\left(\tilde{\mu}_{A}(x),\tilde{\mu}_{A}(a)\right) \leq \tilde{\mu}_{A}(z) \text{ and}$$

$$S\left(\tilde{\lambda}_{A}(x),\tilde{\lambda}_{A}(a)\right) \geq \tilde{\lambda}_{A}(z), \quad (4)\tilde{\mu}_{A}(x) \leq \inf_{\alpha \in r \cdot x} \tilde{\mu}_{A}(\alpha) \text{ and}$$

$$\tilde{\lambda}_{A}(x) \geq \sup_{\alpha \in r \cdot x} \tilde{\lambda}_{A}(\alpha), \forall x, r \in R.$$

With any interval valued intuitionistic fuzzy set $A = \left(\tilde{\mu}_{A}, \tilde{\lambda}_{A}\right) \text{ of } \mathbb{R} \text{ there are connected two levels:}$ $U\left(\tilde{\mu}_{A}; [t,s]\right) = \left\{x \in \mathbb{R} : \tilde{\mu}_{A}\left(x\right) \ge [t,s]\right\}, \text{ and}$ $L\left(\tilde{\lambda}_{A}; [t,s]\right) = \left\{x \in \mathbb{R} : \tilde{\lambda}_{A}\left(x\right) \le [t,s]\right\}.$

Theorem 2.2 Let T (resp. S)be an idempotent interval tnorm (resp. s-norm). Then $A = (\tilde{\mu}_A, \tilde{\lambda}_A)$ is an interval valued intuitionistic (S,T)-fuzzy H_v -ideal of Rif and only if for all $t, s \in [0,1], t \le s, U(\tilde{\mu}_A; [t,s])$ and $L(\tilde{\lambda}_A; [t,s])$ are H_v -ideals of R.

Proof Let $A = (\tilde{\mu}_A, \tilde{\lambda}_A)$ be an interval valued intuitionistic (S,T)-fuzzy H_{y} -ideal of R. Then for every $x, y \in U(\tilde{\mu}_A; [t, s])$ we have $\tilde{\mu}_A(x) \ge [t, s]$ and $\tilde{\mu}_{A}(y) \geq [t, s]$. Hence $T(\tilde{\mu}_A(x), \tilde{\mu}_A(y)) \ge T([t,s], [t,s]) = [t,s]$, and so $\inf_{\alpha \in x+y} \tilde{\mu}_{A}(\alpha) \geq [t,s]. \text{ Therefore } \alpha \in U(\tilde{\mu}_{A};[t,s]) \text{ for }$ every $\alpha \in x + y$, so $x + y \subseteq U(\tilde{\mu}_{A}; [t, s])$. Thus, for every $a \in U(\tilde{\mu}_A; [t, s])$, we have $a + U(\tilde{\mu}_A; [t, s]) \subseteq U(\tilde{\mu}_A; [t, s])$. On the other hand, for $x, a \in U(\tilde{\mu}_A; [t, s])$ there exists $y \in R$ such that $x \in a + y$ and $T(\tilde{\mu}_A(x), \tilde{\mu}_A(a)) \leq \tilde{\mu}_A(y)$. But $T(\tilde{\mu}_{A}(x),\tilde{\mu}_{A}(a)) \geq [t,s]$ for all $x, a \in U(\tilde{\mu}_{A};[t,s])$ so $\tilde{\mu}_{A}(y) \geq [t, s]$ that is, $y \in U(\tilde{\mu}_{A}; [t, s])$, whence $U(\tilde{\mu}_{A};[t,s]) \subseteq a + U(\tilde{\mu}_{A};[t,s])$, and, in consequence, $U(\tilde{\mu}_{4};[t,s]) = a + U(\tilde{\mu}_{4};[t,s])$. Similarly, we can prove that $U(\tilde{\mu}_A; [t, s]) = U(\tilde{\mu}_A; [t, s]) + a$. That is, $a + U\left(\tilde{\mu}_{A}; [t,s]\right) = U\left(\tilde{\mu}_{A}; [t,s]\right) = U\left(\tilde{\mu}_{A}; [t,s]\right) + a.$ This proves that $\left(U(\tilde{\mu}_A; [t, s]), +\right)$ is an H_v -subgroup of (R, +).

If $r \in R$ and $x \in U(\tilde{\mu}_A; [t, s])$ then $\tilde{\mu}_A(x) \ge [t, s]$, which means that $\inf_{\alpha \in r \cdot x} \tilde{\mu}_A(\alpha) \ge [t, s]$. So, $\alpha \in U(\tilde{\mu}_A; [t, s])$ for every $\alpha \in r \cdot x$. Therefore,

 $r \cdot x \subseteq U(\tilde{\mu}_A; [t, s])$, i.e. $r \cdot U(\tilde{\mu}_A; [t, s]) \subseteq U(\tilde{\mu}_A; [t, s])$. This proves that $U(\tilde{\mu}_{A};[t,s])$ is an H_{ν} -ideal of R. Similarly, we can show that $L(\tilde{\lambda}_A; [t, s])$ is an H_v -ideal of R. Conversely, assume that for every $[t, s] \in D[0, 1]$ any non-empty $U(\tilde{\mu}_A; [t, s])$ is an H_v -ideal of R. If $[t_0, s_0] = T(\tilde{\mu}_A(x), \tilde{\mu}_A(y))$ for some $x, y \in R$, then $x, y \in U(\tilde{\mu}_{4}; [t_0, s_0])$, and so $x + y \subseteq U(\tilde{\mu}_{4}; [t_0, s_0])$. Therefore $\alpha \in U(\tilde{\mu}_{4}; [t_{0}, s_{0}])$ for every $\alpha \in x + y$, and so $\inf_{\alpha \in x+y} \tilde{\mu}_A(\alpha) \ge T(\tilde{\mu}_A(x), \tilde{\mu}_A(y))$. Now, if $[t_1, s_1] = T(\tilde{\mu}_A(a), \tilde{\mu}_A(x))$ for some $a, x \in R$, then $a + x \in U(\tilde{\mu}_A; [t_1, s_1])$, so there exists $y \in U(\tilde{\mu}_A; [t_1, s_1])$ such that $x \in a + y$. But for $y \in U(\tilde{\mu}_A; [t_1, s_1])$ we have $\tilde{\mu}_A(y) \ge [t_1, s_1]$, whence $\tilde{\mu}_A(y) \geq T(\tilde{\mu}_A(a), \tilde{\mu}_A(x)).$ Similarly, we can show that for $a, x \in R$, there exists $z \in R$ such that $x \in z + a$ and $\tilde{\mu}_A(z) \ge T(\tilde{\mu}_A(a), \tilde{\mu}_A(x))$. If $[t_2, s_2] = \tilde{\mu}_A(x)$ for some $x \in R$, then $x \in U(\tilde{\mu}_A; [t_2, s_2])$, and so $r \cdot x \in U(\tilde{\mu}_A; [t_2, s_2])$ for every $x \in R$. Therefore for every $\alpha \in r \cdot x$, we have $\alpha \in U(\tilde{\mu}_{4}; [t_{2}, s_{2}])$, consequently $\inf_{\alpha \in r, x} \tilde{\mu}_A(\alpha) \ge [t_2, s_2] = \tilde{\mu}_A(x).$ This proves that $\tilde{\mu}_A$ is an interval valued T-fuzzy H_v ideal of R. Similarly, we can show that $\tilde{\lambda}_A$ is an interval valued Sfuzzy H_v -ideal of R. Therefore, $A = \left(\tilde{\mu}_A, \tilde{\lambda}_A\right)$ is an

interval valued intuitionistic (S,T)-fuzzy H_v -ideal of R.

Definition 2.3 Let $f: X \to Y$ be a mapping and $A = (\tilde{\mu}_A, \tilde{\lambda}_A), B = (\tilde{\mu}_B, \tilde{\lambda}_B)$ an interval valued intuitionistic sets X and Y, respectively. Then the image $f[A] = (f(\tilde{\mu}_A), f(\tilde{\lambda}_A))$ of A is the interval valued intuitionistic fuzzy set of Y defined by

$$f(\tilde{\mu}_{A})(y) = \begin{cases} \sup_{z \in f^{-1}(y)} \tilde{\mu}_{A}(z), f^{-1}(y) \neq \phi \\ [0,0], f^{-1}(y) = \phi \end{cases}$$
 and
$$f(\tilde{\lambda}_{A})(y) = \begin{cases} \inf_{z \in f^{-1}(y)} \tilde{\lambda}_{A}(z), f^{-1}(y) \neq \phi \\ [1,1], f^{-1}(y) = \phi \end{cases}$$

For all $y \in Y$

for all $y \in Y$.

The inverse image $f^{-1}(B)$ of B is an interval valued intuitionistic fuzzy set defined by $f^{-1}(\tilde{\mu}_B)(x) = \tilde{\mu}_{f^{-1}(B)}(x) = \tilde{\mu}_B(f(x)),$ $f^{-1}(\tilde{\lambda}_B)(x) = \tilde{\lambda}_{f^{-1}(B)}(x) = \tilde{\lambda}_B(f(x))$ for all $x \in X$.

Definition 2.4 [18] Let *R* and *S* be two H_v -rings. A mapping $f: R \to S$ is called an H_v -homomorphism or weak homomorphism if for all $x, y, r \in R$ the following relations hold: $f(x+y) \cap (f(x)+f(y)) \neq \phi$ and $f(r \cdot x) \cap r \cdot f(x) \neq \phi$.

f is called an inclusion homomorphism if $f(x+y) \subseteq f(x) + f(y)$ and $f(r \cdot x) \subseteq r \cdot f(x)$ for all $x, y, r \in R$. Finally, f is called a strong homomorphism if for all $x, y, r \in R$ we have f(x+y) = f(x) + f(y) and $f(r \cdot x) = r \cdot f(x)$.

Lemma 2.5 [18] Let R_1 and R_2 be two H_v -ringsand $f: R_1 \to R_2$ a strong epimorphism. If S is an H_v -ideal of R_2 , then $f^{-1}(S)$ is an H_v -ideal of R_1 .

Theorem 2.6 Let R_1 and R_2 be two H_{ν} -rings, f a strong epimorphism from R_1 into R_2 and T (resp. S) an idempotent interval t-norm (resp. s-norm).

(i) If $A = (\tilde{\mu}_A, \tilde{\lambda}_A)$ is an interval valued intuitionistic (S,T)-fuzzy H_v -ideal of R_1 , then the image f[A] of A is an interval intuitionistic (S,T)-fuzzy H_v -ideal of R_2 .

(ii) If $B = (\tilde{\mu}_B, \tilde{\lambda}_B)$ is an interval valued intuitionistic (S,T)-fuzzy H_v -ideal of R_2 , then the inverse image

 $f^{-1}(B)$ of B is an interval valued intuitionistic (S,T)-fuzzy H_{v} -ideal of R_{1} .

Proof (i) Let $A = \left(\tilde{\mu}_A, \tilde{\lambda}_A\right)$ be an interval valued intuitionistic (S,T)-fuzzy H_{y} -ideal of R_{1} . By Theorem 2.2, $U(\tilde{\mu}_A; [t, s])$ and $L(\tilde{\lambda}_A; [t, s])$ are H_{ν} ideals of R_1 for every $[t, s] \in D[0, 1]$. Therefore, by Lemma 3.5, $f\left(U\left(\tilde{\mu}_{A}; [t,s]\right)\right)$ and $f\left(L\left(\tilde{\lambda}_{A}; [t,s]\right)\right)$ are H_{y} -ideals of R_{2} . But $U(f(\tilde{\mu}_A); [t,s]) = f(U(\tilde{\mu}_A; [t,s]))$ and $L(f(\tilde{\lambda}_A); [t, s]) = f(L(\tilde{\lambda}_A; [t, s])), \text{ so}$ $U(f(\tilde{\mu}_A);[t,s])$ and $L(f(\tilde{\lambda}_A);[t,s])$ are H_v -ideals of R_2 . Therefore f[A] is an interval valued intuitionistic (S,T)-fuzzy H_{v} -ideal of R_{2} . (ii) For any $x, y \in R$ and $\alpha \in x + y$, we have $\tilde{\mu}_{f^{-1}(B)}(\alpha) = \tilde{\mu}_{B}(f(\alpha)) \ge T(\tilde{\mu}_{B}(f(x)), \tilde{\mu}_{B}(f(y))) = T(\tilde{\mu}_{f^{-1}(B)}(x), \tilde{\mu}_{f^{-1}(B)}(y)).$

Therefore

 $\inf_{\alpha \in x+y} \tilde{\mu}_{f^{-1}(B)}(\alpha) \ge T(\tilde{\mu}_{f^{-1}(B)}(x), \tilde{\mu}_{f^{-1}(B)}(y)).$ For $x, a \in R_2$ there exists $y \in R_2$ such that $x \in a + y$. Thus $f(x) \in f(a) + f(y)$ and $T\left(\tilde{\mu}_{f^{-1}(B)}(x),\tilde{\mu}_{f^{-1}(B)}(a)\right) = T\left(\tilde{\mu}_{B}(f(x)),\tilde{\mu}_{B}(f(y))\right) \leq \tilde{\mu}_{B}(f(y)) = \tilde{\mu}_{f^{-1}(B)}(y) = \tilde{\mu}_{f^{-1}(B)}(y)$ Wouglouklis T., Hyperstructures and their representations, In the same manner, we can show that for $x, a \in R_2$ there exists $z \in R_2$ such that $x \in z + a$ and

$$T\left(\tilde{\mu}_{f^{-1}(B)}(x),\tilde{\mu}_{f^{-1}(B)}(a)\right) \leq \tilde{\mu}_{f^{-1}(B)}(z).$$

It is not difficult to see that, for all $x \in R_2, r \in R$ and $\alpha \in r \cdot x$, we have

$$\tilde{\mu}_{f^{-1}(B)}(\alpha) = \tilde{\mu}_{B}(f(\alpha)) \geq \tilde{\mu}_{B}(f(x)) = \tilde{\mu}_{f^{-1}(B)}(x),$$

whence $\inf_{\alpha \in r_{x}} \tilde{\mu}_{f^{-1}(B)}(\alpha) \geq \tilde{\mu}_{f^{-1}(B)}(x).$

This completes the proof that $\tilde{\mu}_{f^{-1}(B)}$ is an interval valued T-ideal of R_1 .

Similarly, we can prove $\tilde{\lambda}_{f^{-1}(B)}$ is an interval valued Sfuzzy H_{y} -ideal of R_{1} . Therefore $f^{-1}(B)$ is an interval valued intuitionistic (S,T)-fuzzy H_{ν} -ideal of R_1 .

III. REFERENCES

- [1] Marty F., Sur une generalization de la notion de group, in: 8th congress Math. Skandenaves, Stockhole, (1934) 45-49.
- [2] Vougiouklis T., A new class of hyperstructures, J. Combin. Inf. System Sci.
- [3] Davvaz B., A brief survey of the theory of Hv-structures, in: Proceedings of the 8th International Congress on AHA, Greece 2002, Spanids Press, (2003) 39-70.
- [4] Zadeh L. A., Fuzzy sets, Inform. And Control 8 (1965) 338-353.
- [5] Atanassov K.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [6] Atanassov K. T., Intuitionistic fuzzy sets: Theory and Applications, Studies in fuzziness and soft computing, 35, Heidelberg, New York, Physica-Verl., 1999.
- [7] Atanassov K. T., New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61, (1994) 137-142.
- [8] Biswas R., Intuitionistic fuzzy subgroups, Math. Forum 10 (1989) 37-46.
- Kim K. H., Dudek W. A., Jun Y. B., On intuitionistic fuzzy [9] subquasigroups of quasigroups, Quasigroups Relat Syst 7 (2000) 15-28.
- [10] Kim K. H., Jun Y. B., Intuitionistic fuzzy ideals of semigroups, Indian J. Pure Appl. Math. 33 (4) (2002) 443-449.
- [11] Zhan J., Dudek W. A., Interval Valued Intuitionistic -fuzzy submodules, Acta Mathematica Sinica, Englsh series 22 (2006) 963-970.
- [12] Davvaz B., Dudek W. A., Jun Y. B., Intuitionistic fuzzy Hvsubmodules, Inform. Sci. 176 (2006) 285-300.
- Hadronic Press, Florida, 1994.
- [14] Davvaz B., Fuzzy Hv-groups, Fuzzy Sets and Systems 101 (1999) 191-195.
- [15] Sinha A. K., Dewangan M. K., Intuitionistic Fuzzy Hvsubgroups, International Journal of Advanced Engineering Research and Science 3 (2014) 30-37.
- [16] Davvaz B., Dudek W. A., Intuitionistic fuzzy Hv-ideals, International Journal of Mathematics and Mathematical Sciences, 2006, 1-11.
- [17] Zhan J., Davvaz B., Corsini P., Intuitionistic -fuzzy hyperquasigroups, Soft Comput 12 (2008) 1229-1238.
- [18] Davvaz B., Fuzzy Hv-submodules, Fuzzy Sets and Systems 117 (2001) 477-484.